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ABSTRACT

The time-dose-mortality modeling technique has been developed recently to process routine bioassay data for
measurement of the efficacy of chemical and microbial agents for insect and mite control. This paper attempts to
summarize the advantages of the modeling technigque over classical probit analysis and discusses the biological implications
of parameters generated by the model when microbial control agents are involved in bioassays. The modeling technique is
recommended for processing time-dose-mortality data of chemical and microbial control agents against insect hosts
because it allows for simultaneous measurement of the effects of time, dose, and time-dose interaction in a single model.

RESUMEN

El modelo estadistico tiempo-dosis-mortalidad ha sido desarrollado recientemente para procesar la informacion
generada en bioensayos de rufina para medir la eficacia de los agentes quimicos ¥ microbianos en el control de insectos y
dcaros. Este articulo intenta resumir las ventajas de este modelo sobre el andlisis probit clisico y discute las implicaciones
bioldgicas de los parimetros generados por el modelo cuando los agentes microbianos de control estin implicados en
pruebas biolégicas. Esta técnica de modelos estadisticos es recomendada para procesar la informacion de tiempo-dosis-
mortalidad de agentes de control quimico y microbiano contra insectos hospederos porque permite medir simultaneamente
en un solo modelo el efecto del tiempo, la dosis v la interaceién de ambos.
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The most promising microbial species or strains for insect  replication, and time intervals at each of which an observation
control can be recognized or selected largely based upon their  is made for scoring a response. The response is “all or none’ for
indices of virulence (e.g., LD and LTs) for the target insect each individual, but is a binomial variable {a proportion
species. The virulence indices are usually estimated by  ranging from 0 to 1) for the whole colony tested. Thus, the
processing the time-dose-mortality (TDM) data that are bioassay always generates data in the form:

generated in a routine bioassay. Finney's (1971) ‘Probit i i i i nu
Analysis’ is used as the ‘know how' in TDM analysis. - Han # i i
Recently, however, a novel model was found to better fit the
TDM data and to generate biologically sound parameters in el Hin i "o i

estimating virulence indices (Robertson and Preisler, 1992; where d is the ith dose used in the bioassay (i= 1, 2, -, [) and
Feng et al., 19%6; Nowierski ef al., 1996). This model is called 1y the number of target insects surviving the ith dose at the jth
the time-dose-mortality model. We present an overview of the time interval (7= 1, 2. -, /) during the bioassay. The cumulative
model and discuss its advantages over classical probit analysis mortality data at & can be estimated by calculating (ma-sq)/me
in the processing of TDM data. There exists a graphic sigmoid relationship when the

Limitations of Probit Analysis. A quantitative bioassay cumulative mortality of target insects is plotted against the
must include varying doses (or concentrations) of a  values of doses used. This constitutes the biological
biologically active agent (e.g., chemical toxicant or microbial background on which Finney (1971} developed the probit
agent), a target insect colony or population consisting of a analysis, The sigmoid relationship can be linearized by simply
reasonable number of individuals {e.g., =30) per dose and transforming the values of doses and the cumulative mortality
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to logarithms and probit units, respectively, Therefore, a linear
regression model can be easily generated to describe the
relationship between the probitized mortality and the log-
transformed doses, Further, the estimates of the intercept and
slope parameters from the regression can be used to compute
the lethal dose causing an expected mortality (LDsi, LDvs, LDun,
etc.). Similarly, the linear regression of time (after treatment)
against the probitized mortality at a given dose gives the
intercept and slope for estiming the lethal time for an expected
mortality at that dose (e.g., LT=). This is the process of probit
analysis. Probit analysis uses only a small part of the
observations generated from the bicassay, e. g., mortality
records only at one time interval (for lethal dose estimates) or
at only one dose (for lethal time estimates). The interaction
between dose and time, the most important characteristic for
the biologically active agent tested, can not be depicted from
probit analysis because the two variables are separately
involved in the regression. Moreover, the intercept and slope
parameters estimated from probit analysis simply provide a
measurement of the quantitative relationship for the two
variables involved., but have little biological meaning.

Time-Dose-Mortality Modeling Analysis. 1t is however
possible to integrate into a single model time and dose, the two
variables that appear to be significantly influential on
mortality. The integration not only enables quantitative
measurement of the time-dose interaction and allows
generation of parameters useful for estiming virulence indices,
but it also depicts the outlook of the bioassay in a biologically
meaningful way. Preisler and Roberston (1989) described a
model that satisfies these objectives and named it the time-
dose-mortality model based on its function and usefulness, The
model was used to successfully fit the data from bioassays of
various chemical insecticides (Preisler and Roberston, 1989)
and later was recommended for general use (Roberston and
Preisler, 1992). When the model was recently introduced in the
processing of bioassay data of entomopathogenic fungi on
grasshoppers and aphids, Nowierski er al. (1996) Turther
clarified the sources of variation associated with the modeling,
and Feng ef al. (1996, 1999) gave a biological interpretation to
the parameters of the model. From these contributions, the
TDM modeling technique for analysis of TDM data can be
presented as follows.

Modeling. Assuming that a bioassay includes [ doses or
concentrations and J/ times of observation after treatment, the
cumulative mortality probability, pi, caused by the dose d; (i=
1,2, -, {j at the time of the jth observation #; (= 1, 2, --,.J) can
be described as:

P,= 1-exp[-exp(t;+Blog,(d))] O

where § is the slope describing the dose effect, and 7, the
parameter(s) for the time effect of & during the period from the
start to the jth observation, [1, =, -, 4, #). Equation 1 is called
CLL model because it includes a linear part (i.e., T+ 6 logi(d))
which is named the complementary log-log line or the linear
predictor when In(-In{1-p) is assumed to be linear in the
covariates. However, because py is a binomial variable
dependent on time, it does not satisfy the requirement of time

independence for the model, and therefore Eq. 1 can not fit
directly the TDM data.

With the time independence in mind, let us consider the
actual mortality, g, caused by ¢ during the time interval [#.., £]:

Q;‘j = 1 = BKP[ = EKP{]’J + .\B ng m(di)}] (2)

where § is equal to that in Eq. | and y, describes the time effect
of d during [#.r, t;]. Due to the independence between the time
intervals, Eq. 2 is allowed to fit the TDM data by approaching
the binomial response variable to the maximum likelihood
equation:

J 1

[TII4-g,)"" (3)

j=1im=1
where ny is the number of insects surviving & at £ and ry (= ne-
i) Tepresents the number of insects that actually die during
the time interval [#., t]. The observed g+ is estimated as ri'n in
the calculations. The fitting results in the parameters §, , and
Jji for Eq. 2. Then, the i:' is obtained using the formula:

i
Z=In( ¥ e™) (@)
k=1

The fitting of Eq. 2 yields not only the estimates of §, and i but
also their variance and covariance., The wvariance and
covariance for ¥, and § can be estimated as:

- 1 i - e
\-’Ell[‘rj.)= 2% Z E e?. r.cﬁv{},w ?'n) (3)
e 1

T m=l n=

Ead j -~
cov(t, )= ¥ e"covBg) o
e 1
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Goodness of Fit for the Binomial Variable. Nowierski et
al. (1996) found that the Hosmer-Lemeshow statistic {Hosmer
and Lemeshow, 1989}, C, was suitable for testing the goodness
of fit in the analysis of the TDM data. It is actually the
modified Pearson’s x* by grouping, i.e.,

oo : (0,—-n,7,)

= = (7
k=11, 7(1-71,)

where oi, i, and 1 are the number of insects that have died, the
total number of insects, and the average conditional mortality
probability estimated using Eq. 2, respectively, in the kth
group. The C statistic follows a »° distribution with df=g-2
(usually g = 10}

Estimation of the Lethal Dose Effect. The estimates of
and T are used to calculate the logarithm of the lethal dose
ﬁj responsible for ps at f

A - In( _ln(l:pij)) -7,
B

i

(8)

and its variance
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var( ﬁj] = “L(E\‘fva: (fﬁ} + var(f) + Zﬁjcnv{%j,fﬂ)
2
(9)

When pi=0.5, Eq. 8 gives an estimate of logi(LDx), i.e., §j= (-
0.3665- i:'] /B,

Estimation of the Lethal Time Effect. For a given 4., the
time it takes to cause an expected mortality, p., is calculated by:

0 'rj ok (rin B IJ'}(pe mlﬁu]
£ (ﬁfjn _ﬁ:‘j}

where p is estimated from Eq. 1 using B and t. When p=0.5,
Eq. 10 vields a solution to the LTw at 4.

Saftware for the Modeling. The TDM data modeling
method is mathematically more robust and complicated than
the probit analysis. The modeling requires the use of
sophisticated software, e.g., GLIM (Payne, 1978; Roberston
and Preisler, 1992), SAS Proc Logistic and Proc Genmod
(SAS, 1992: Nowierski ef al.. 1996). A new soltware, DPS,
developed by Tang and Feng (1997), has a function that treats
all the procedures outlined above by simply selecting
‘Bioassay-TDM modeling” from a menu.

(10)

CONCLUSION

The TDM modeling method is significantly advantageous
over probit analysis. First, the model includes the two
independent wvariables, dose and time, and enables the
generation of parameters that describe not only the separate
effects of dose and time on the tested agent-insect relationship,
but also the reasonable interaction between the two variables,
Second, the parameters, i, ¥, and %j._. obtained from the
modeling are biologically sound and can be interpreted clearly
as the dose effect, and the conditional and cumulative time
effects, respectively. Third, the modeling includes the use of all
of the TDM data from a bioassay instead of part of them, thus
yielding information that truly reflects the outcome of the
experiment without misleading. Fourth, the length of time, j,
corresponding to the largest value of the parameter for the
conditional time effect can be used as an estimate of latent
period of a microbial agent that is assayved against insects
(Feng ei al., 1998). Finally, the model is generally useful for
the analysis of data from bioassays that include a binomial
variable which expresses the conditional response probability
of the target organism and its dependence on the time and dose
variables.

Considering the listed advantages, the TDM model is

4

undoubtedly a very useful tool for replacement of the probit
analysis method conventionally used. The model is strongly
recommended for the analysis of TDM data of microbial
conirol agents on arthropods.
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